first working version
This commit is contained in:
390
exam_system/LINEAR_ALGEBRA_EXAM_CREATED.md
Normal file
390
exam_system/LINEAR_ALGEBRA_EXAM_CREATED.md
Normal file
@@ -0,0 +1,390 @@
|
||||
# 📐 Linear Algebra Medium Exam Created
|
||||
|
||||
## ✅ Exam Details
|
||||
|
||||
**Exam ID:** `linear-algebra-medium-v1`
|
||||
**Title:** Linear Algebra - Medium Level (Computational)
|
||||
**Subject:** Linear Algebra
|
||||
**Difficulty:** Intermediate (Medium)
|
||||
**Duration:** 50 minutes
|
||||
**Passing Score:** 70%
|
||||
|
||||
---
|
||||
|
||||
## 📊 Exam Structure
|
||||
|
||||
**Total Questions:** 10 (all require calculations)
|
||||
**Total Points:** 110 points
|
||||
**Question Type:** Single choice only (as requested)
|
||||
|
||||
### Question Distribution
|
||||
- ✅ **10** Single Choice questions (110 points total)
|
||||
- ✅ **All questions require calculations**
|
||||
- ✅ **"I Don't Know" option available**
|
||||
|
||||
---
|
||||
|
||||
## 📚 Topics Covered & Calculations Required
|
||||
|
||||
### Section 1: Vector Operations & Computations (3 questions, 30 points)
|
||||
|
||||
**Q1: Dot Product Calculation**
|
||||
- Given: u = [3, -2, 1], v = [1, 4, -2]
|
||||
- Calculate: u · v = (3)(1) + (-2)(4) + (1)(-2) = 3 - 8 - 2 = -3
|
||||
- **Points:** 10
|
||||
|
||||
**Q2: Vector Magnitude**
|
||||
- Given: w = [3, 4]
|
||||
- Calculate: ||w|| = √(3² + 4²) = √(9 + 16) = √25 = 5
|
||||
- **Points:** 10
|
||||
|
||||
**Q3: Unit Vector**
|
||||
- Given: v = [6, 8]
|
||||
- Calculate: ||v|| = √(36 + 64) = √100 = 10
|
||||
- Unit vector: v/||v|| = [6/10, 8/10] = [3/5, 4/5]
|
||||
- **Points:** 10
|
||||
|
||||
---
|
||||
|
||||
### Section 2: Matrix Operations & Calculations (3 questions, 30 points)
|
||||
|
||||
**Q4: Matrix Multiplication**
|
||||
- Given: A = [[1, 2], [3, 4]], B = [[2, 0], [1, 3]]
|
||||
- Calculate: AB = [[1·2+2·1, 1·0+2·3], [3·2+4·1, 3·0+4·3]]
|
||||
- AB = [[4, 6], [10, 12]]
|
||||
- Element (1,1) = 4
|
||||
- **Points:** 10
|
||||
|
||||
**Q5: Determinant (2×2)**
|
||||
- Given: A = [[2, 1], [4, 3]]
|
||||
- Calculate: det(A) = (2)(3) - (1)(4) = 6 - 4 = 2
|
||||
- **Points:** 10
|
||||
|
||||
**Q6: Matrix Transpose**
|
||||
- Given: A = [[1, 2], [3, 4]]
|
||||
- Calculate: A^T = [[1, 3], [2, 4]] (rows become columns)
|
||||
- **Points:** 10
|
||||
|
||||
---
|
||||
|
||||
### Section 3: Linear Systems & Solutions (2 questions, 30 points)
|
||||
|
||||
**Q7: Solve 2×2 System**
|
||||
- System: x + 2y = 7, 2x - y = 4
|
||||
- Method 1 (Substitution):
|
||||
- From eq1: x = 7 - 2y
|
||||
- Sub into eq2: 2(7 - 2y) - y = 4
|
||||
- 14 - 4y - y = 4
|
||||
- -5y = -10
|
||||
- y = 2
|
||||
- x = 7 - 2(2) = 3
|
||||
- Answer: x = 3, y = 2
|
||||
- **Points:** 15
|
||||
|
||||
**Q8: Matrix Inverse (2×2)**
|
||||
- Given: A = [[2, 1], [4, 3]]
|
||||
- Formula: A^(-1) = (1/det(A)) × [[d, -b], [-c, a]]
|
||||
- det(A) = 2·3 - 1·4 = 2
|
||||
- A^(-1) = (1/2) × [[3, -1], [-4, 2]]
|
||||
- A^(-1) = [[3/2, -1/2], [-2, 1]]
|
||||
- **Points:** 15
|
||||
|
||||
---
|
||||
|
||||
### Section 4: Eigenvalues & Special Computations (2 questions, 20 points)
|
||||
|
||||
**Q9: Eigenvalues**
|
||||
- Given: A = [[3, 1], [1, 3]]
|
||||
- Characteristic equation: det(A - λI) = 0
|
||||
- det([[3-λ, 1], [1, 3-λ]]) = 0
|
||||
- (3-λ)(3-λ) - (1)(1) = 0
|
||||
- (3-λ)² - 1 = 0
|
||||
- 9 - 6λ + λ² - 1 = 0
|
||||
- λ² - 6λ + 8 = 0
|
||||
- (λ - 4)(λ - 2) = 0
|
||||
- λ₁ = 4, λ₂ = 2
|
||||
- **Points:** 15
|
||||
|
||||
**Q10: Trace of Matrix**
|
||||
- Given: A = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
|
||||
- Trace = sum of diagonal elements
|
||||
- tr(A) = 1 + 2 + 3 = 6
|
||||
- **Points:** 5
|
||||
|
||||
---
|
||||
|
||||
## 📐 Calculation Techniques Tested
|
||||
|
||||
### 1. Vector Operations
|
||||
- Dot product computation
|
||||
- Vector magnitude (Euclidean norm)
|
||||
- Normalization (unit vectors)
|
||||
|
||||
### 2. Matrix Arithmetic
|
||||
- Matrix multiplication (row × column)
|
||||
- Transpose operation
|
||||
- Determinant (2×2 formula)
|
||||
|
||||
### 3. Linear Systems
|
||||
- System of equations solving
|
||||
- Substitution or elimination method
|
||||
- Matrix inverse formula (2×2)
|
||||
|
||||
### 4. Eigenvalues
|
||||
- Characteristic equation
|
||||
- Solving quadratic equations
|
||||
- Determinant of (A - λI)
|
||||
|
||||
### 5. Matrix Properties
|
||||
- Trace (diagonal sum)
|
||||
- Special matrix identification
|
||||
|
||||
---
|
||||
|
||||
## ✨ Features Enabled
|
||||
|
||||
✅ **"I Don't Know" Option**
|
||||
- Available on all questions
|
||||
- Encourages honest self-assessment
|
||||
- Scores 0 points (no penalty)
|
||||
|
||||
✅ **Automatic Scoring**
|
||||
- All questions are single choice
|
||||
- Immediate results upon submission
|
||||
- No manual grading required
|
||||
|
||||
✅ **Computational Focus**
|
||||
- All questions require calculations
|
||||
- Tests practical problem-solving
|
||||
- Verifies understanding through computation
|
||||
|
||||
---
|
||||
|
||||
## 🎓 Learning Objectives
|
||||
|
||||
This exam assesses ability to:
|
||||
|
||||
1. **Perform Vector Operations**
|
||||
- Compute dot products accurately
|
||||
- Calculate vector magnitudes
|
||||
- Find unit vectors through normalization
|
||||
|
||||
2. **Execute Matrix Calculations**
|
||||
- Multiply matrices correctly
|
||||
- Transpose matrices
|
||||
- Compute 2×2 determinants
|
||||
|
||||
3. **Solve Linear Systems**
|
||||
- Use algebraic methods (substitution/elimination)
|
||||
- Find matrix inverses for 2×2 matrices
|
||||
- Apply inverse formula correctly
|
||||
|
||||
4. **Work with Eigenvalues**
|
||||
- Set up characteristic equations
|
||||
- Solve for eigenvalues
|
||||
- Understand matrix properties (trace)
|
||||
|
||||
---
|
||||
|
||||
## 🎯 Difficulty Level: Medium
|
||||
|
||||
### Why Medium Difficulty?
|
||||
|
||||
**Computational Requirements:**
|
||||
- Multi-step calculations
|
||||
- Matrix multiplication (not trivial)
|
||||
- System solving (2 equations, 2 unknowns)
|
||||
- Eigenvalue computation (requires polynomial solving)
|
||||
- Matrix inverse (requires formula knowledge)
|
||||
|
||||
**Knowledge Requirements:**
|
||||
- Understand formulas, not just plug-and-chug
|
||||
- Know when to apply which technique
|
||||
- Interpret results correctly
|
||||
|
||||
**Not Beginner Because:**
|
||||
- Requires matrix multiplication mastery
|
||||
- Needs eigenvalue concepts
|
||||
- Matrix inverse is non-trivial
|
||||
- Multi-step problem solving
|
||||
|
||||
**Not Advanced Because:**
|
||||
- Only 2×2 and 3×3 matrices
|
||||
- No abstract theory questions
|
||||
- No proofs required
|
||||
- Standard computational problems
|
||||
|
||||
---
|
||||
|
||||
## 📊 Expected Performance
|
||||
|
||||
### Score Ranges
|
||||
- **90-100%** - Excellent computational skills
|
||||
- **80-89%** - Strong understanding, minor calculation errors
|
||||
- **70-79%** - Passing, review some concepts
|
||||
- **60-69%** - Below passing, need more practice
|
||||
- **<60%** - Need to study fundamentals more
|
||||
|
||||
### Time Management
|
||||
- **Q1-Q3 (Vectors):** 2-3 minutes each
|
||||
- **Q4-Q6 (Matrices):** 3-4 minutes each
|
||||
- **Q7-Q8 (Systems):** 5-7 minutes each
|
||||
- **Q9 (Eigenvalues):** 6-8 minutes
|
||||
- **Q10 (Trace):** 1-2 minutes
|
||||
- **Total estimate:** 35-40 minutes + 10 min review
|
||||
|
||||
---
|
||||
|
||||
## 🔗 Integration with Learning Plan
|
||||
|
||||
This exam aligns with:
|
||||
- **Linear Algebra Learning Plan - Phase 1-2**
|
||||
- Covers Modules 1.1-1.3, 2.1-2.3, 2.6
|
||||
- Tests computational fluency
|
||||
- Prepares for Phase 3 (advanced decompositions)
|
||||
|
||||
### Recommended Study Before Taking
|
||||
1. Complete Linear Algebra Modules 1.1-1.3 (Foundations)
|
||||
2. Complete Modules 2.1-2.3 (Systems, Inverses, Determinants)
|
||||
3. Study Module 2.6 (Eigenvalues basics)
|
||||
4. Practice 50+ similar problems
|
||||
5. Implement in Python/NumPy
|
||||
|
||||
### After Passing
|
||||
1. Review any weak areas
|
||||
2. Continue to Module 2.4 (Vector Spaces)
|
||||
3. Study Module 3.3 (Matrix Decompositions)
|
||||
4. Take advanced exam (future)
|
||||
|
||||
---
|
||||
|
||||
## 🚀 How to Access
|
||||
|
||||
### Via Web Interface
|
||||
1. Go to http://localhost
|
||||
2. Login or register
|
||||
3. Navigate to "Available Exams"
|
||||
4. Select "Linear Algebra - Medium Level (Computational)"
|
||||
5. Click "Start Exam"
|
||||
|
||||
### Via API
|
||||
```bash
|
||||
# List all exams
|
||||
curl http://localhost/api/exams/
|
||||
|
||||
# Get Linear Algebra exam details
|
||||
curl http://localhost/api/exams/linear-algebra-medium-v1/
|
||||
|
||||
# Start attempt (requires authentication)
|
||||
curl -X POST http://localhost/api/exams/linear-algebra-medium-v1/start
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📝 Calculation Reference
|
||||
|
||||
### Quick Formulas Needed
|
||||
|
||||
**Dot Product:**
|
||||
```
|
||||
a · b = a₁b₁ + a₂b₂ + a₃b₃
|
||||
```
|
||||
|
||||
**Vector Magnitude:**
|
||||
```
|
||||
||v|| = √(v₁² + v₂² + v₃²)
|
||||
```
|
||||
|
||||
**Unit Vector:**
|
||||
```
|
||||
û = v / ||v||
|
||||
```
|
||||
|
||||
**Matrix Multiplication (2×2):**
|
||||
```
|
||||
[[a, b], [c, d]] × [[e, f], [g, h]] = [[ae+bg, af+bh], [ce+dg, cf+dh]]
|
||||
```
|
||||
|
||||
**Determinant (2×2):**
|
||||
```
|
||||
det([[a, b], [c, d]]) = ad - bc
|
||||
```
|
||||
|
||||
**Matrix Inverse (2×2):**
|
||||
```
|
||||
A^(-1) = (1/det(A)) × [[d, -b], [-c, a]]
|
||||
```
|
||||
|
||||
**Eigenvalues (2×2):**
|
||||
```
|
||||
det(A - λI) = 0
|
||||
Solve characteristic polynomial
|
||||
```
|
||||
|
||||
**Trace:**
|
||||
```
|
||||
tr(A) = Σ Aᵢᵢ (sum of diagonal)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📈 Available Exams in System
|
||||
|
||||
1. **Python Easy** (10 questions)
|
||||
2. **Python Easy 15Q** (15 questions)
|
||||
3. **Python Intermediate** (50 questions)
|
||||
4. **C++ Easy** (20 questions)
|
||||
5. **Linear Algebra Medium** (10 questions) ⭐ **NEW**
|
||||
|
||||
---
|
||||
|
||||
## 🎯 Recommended Preparation
|
||||
|
||||
### Tools Needed
|
||||
- Paper and pencil for calculations
|
||||
- OR Python + NumPy to verify
|
||||
- Calculator (optional)
|
||||
|
||||
### Practice Problems
|
||||
Before taking this exam, practice:
|
||||
- 20+ dot product problems
|
||||
- 20+ matrix multiplication problems
|
||||
- 10+ determinant calculations
|
||||
- 10+ system solving problems
|
||||
- 5+ eigenvalue problems
|
||||
|
||||
### Study Resources
|
||||
- Linear Algebra Learning Plan: Modules 1.1-1.3, 2.1-2.3, 2.6
|
||||
- 3Blue1Brown videos 1-5
|
||||
- Gilbert Strang lectures 1-10
|
||||
- Practice with NumPy to verify calculations
|
||||
|
||||
---
|
||||
|
||||
## 🌟 Exam Features
|
||||
|
||||
### Computational Focus
|
||||
✅ Real calculations required
|
||||
✅ Multi-step problem solving
|
||||
✅ Tests practical skills
|
||||
✅ Verifies formula knowledge
|
||||
|
||||
### Auto-Grading
|
||||
✅ Single choice format
|
||||
✅ Immediate results
|
||||
✅ Detailed feedback
|
||||
✅ Score breakdown by section
|
||||
|
||||
### Student-Friendly
|
||||
✅ "I don't know" option available
|
||||
✅ Auto-save every 10 seconds
|
||||
✅ Timer with warnings
|
||||
✅ Navigation between questions
|
||||
|
||||
---
|
||||
|
||||
**Your Linear Algebra medium exam is ready! Test your computational skills! 📐✨**
|
||||
|
||||
**Created:** October 21, 2025
|
||||
**Status:** ✅ Published and Available
|
||||
**Access:** http://localhost
|
||||
Reference in New Issue
Block a user