first working version

This commit is contained in:
howard
2025-10-22 20:14:31 +08:00
parent c9767b830b
commit 8dc869634e
118 changed files with 22518 additions and 0 deletions

View File

@@ -0,0 +1,709 @@
# Linear Algebra Knowledge Graph - Complete Dependency Map
## 🌳 Knowledge Tree Structure
This document maps all Linear Algebra concepts with their dependencies and optimal learning order.
---
## Level 1: Foundation Concepts (No Prerequisites)
### 1.1 Basic Algebra Review
```
┌──────────────────────────────┐
│ Arithmetic Operations │
│ - Addition, Subtraction │
│ - Multiplication, Division │
│ - Order of operations │
└──────────────────────────────┘
├─> Algebraic Expressions
├─> Solving Linear Equations
├─> Polynomials
└─> Summation Notation (Σ)
```
### 1.2 Coordinate Systems
```
┌──────────────────────────────┐
│ Cartesian Coordinates │
│ - 2D plane (x, y) │
│ - 3D space (x, y, z) │
│ - Points and plotting │
└──────────────────────────────┘
├─> Distance Formula
├─> Midpoint Formula
└─> Graphing Functions
```
---
## Level 2: Vectors - Geometric (Requires Level 1)
### 2.1 Vector Basics
```
┌──────────────────────────────┐
│ Vector Definition │
│ - Magnitude and Direction │
│ - Component Form │
│ - Position Vectors │
└──────────────────────────────┘
├─> Vector Notation (bold, arrow)
├─> ℝ² and ℝ³ vectors
├─> n-dimensional vectors (ℝⁿ)
└─> Column vs Row Vectors
┌──────────────────────────────┐
│ Vector Visualization │
│ - Geometric arrows │
│ - Head and tail │
│ - Parallel vectors │
└──────────────────────────────┘
```
### 2.2 Vector Operations (Geometric)
```
┌──────────────────────────────┐
│ Vector Addition │
│ - Parallelogram Rule │
│ - Tip-to-tail Method │
│ - Component-wise Addition │
└──────────────────────────────┘
├─> Vector Subtraction
├─> Scalar Multiplication (Scaling)
├─> Linear Combinations
└─> Zero Vector
┌──────────────────────────────┐
│ Special Vectors │
│ - Unit Vectors │
│ - Standard Basis (i, j, k) │
│ - Normalization │
└──────────────────────────────┘
```
---
## Level 3: Vector Products (Requires Level 2)
### 3.1 Dot Product (Inner Product)
```
┌──────────────────────────────┐
│ Dot Product │
│ - a · b = Σ aᵢbᵢ │
│ - a · b = ||a|| ||b|| cos θ│
│ - Scalar result │
└──────────────────────────────┘
├─> Vector Length (Norm): ||v|| = √(v · v)
├─> Distance: ||a - b||
├─> Angle Between Vectors
├─> Orthogonality (a · b = 0)
├─> Vector Projection
└─> Cauchy-Schwarz Inequality
┌──────────────────────────────┐
│ Properties of Dot Product │
│ - Commutative: a · b = b · a│
│ - Distributive │
│ - Linearity │
└──────────────────────────────┘
```
### 3.2 Cross Product (3D Only)
```
┌──────────────────────────────┐
│ Cross Product (a × b) │
│ - Vector result │
│ - Perpendicular to both │
│ - Right-hand rule │
└──────────────────────────────┘
├─> Magnitude: ||a × b|| = ||a|| ||b|| sin θ
├─> Area of Parallelogram
├─> Determinant Form
├─> Anti-commutative: a × b = -(b × a)
└─> Triple Scalar Product
┌──────────────────────────────┐
│ Applications │
│ - Normal vectors │
│ - Torque calculations │
│ - Area and volume │
└──────────────────────────────┘
```
---
## Level 4: Matrices - Basics (Requires Level 2-3)
### 4.1 Matrix Fundamentals
```
┌──────────────────────────────┐
│ Matrix Definition │
│ - m × n array of numbers │
│ - Rows and columns │
│ - Matrix indexing Aᵢⱼ │
└──────────────────────────────┘
├─> Matrix Addition/Subtraction
├─> Scalar Multiplication
├─> Transpose (Aᵀ)
├─> Special Matrices (I, O, Diagonal)
└─> Matrix Equality
```
### 4.2 Matrix Multiplication
```
┌──────────────────────────────┐
│ Matrix Product │
│ - (AB)ᵢⱼ = Σ AᵢₖBₖⱼ │
│ - Dimension compatibility │
│ - Non-commutative │
└──────────────────────────────┘
├─> Properties (Associative, Distributive)
├─> Identity: AI = IA = A
├─> Matrix Powers: A², A³, ...
├─> Matrix as Linear Transformation
└─> Block Matrix Multiplication
```
---
## Level 5: Linear Systems (Requires Level 4)
### 5.1 Systems of Linear Equations
```
┌──────────────────────────────┐
│ System Representation │
│ - Ax = b │
│ - Augmented Matrix [A|b] │
│ - Coefficient Matrix │
└──────────────────────────────┘
├─> Gaussian Elimination
├─> Row Operations
├─> Row Echelon Form (REF)
├─> Reduced Row Echelon Form (RREF)
└─> Back Substitution
┌──────────────────────────────┐
│ Solution Types │
│ - Unique Solution │
│ - Infinite Solutions │
│ - No Solution │
└──────────────────────────────┘
├─> Consistency
├─> Homogeneous Systems
├─> Parametric Solutions
└─> Geometric Interpretation
```
---
## Level 6: Matrix Inverses & Determinants (Requires Level 5)
### 6.1 Matrix Inverse
```
┌──────────────────────────────┐
│ Inverse Definition │
│ - AA⁻¹ = A⁻¹A = I │
│ - Exists iff det(A) ≠ 0 │
│ - Unique if exists │
└──────────────────────────────┘
├─> Computing Inverses (Gauss-Jordan)
├─> Inverse Properties: (AB)⁻¹ = B⁻¹A⁻¹
├─> Inverse and Transpose: (Aᵀ)⁻¹ = (A⁻¹)ᵀ
├─> Solving Systems: x = A⁻¹b
└─> Invertible Matrix Theorem
```
### 6.2 Determinants
```
┌──────────────────────────────┐
│ Determinant │
│ - det(A) or |A| │
│ - Scalar value │
│ - Invertibility test │
└──────────────────────────────┘
├─> 2×2: ad - bc
├─> 3×3: Rule of Sarrus or Cofactor
├─> n×n: Cofactor Expansion
├─> Properties: det(AB) = det(A)det(B)
├─> det(Aᵀ) = det(A)
├─> Row Operations Effect
├─> Cramer's Rule
└─> Geometric Meaning (Area/Volume)
```
---
## Level 7: Vector Spaces (Requires Level 2-6)
### 7.1 Abstract Vector Spaces
```
┌──────────────────────────────┐
│ Vector Space Definition │
│ - 10 Axioms │
│ - Closure under + and · │
│ - Examples: ℝⁿ, Polynomials │
└──────────────────────────────┘
├─> Subspaces
├─> Span of Vectors
├─> Linear Independence
├─> Linear Dependence
├─> Basis
└─> Dimension
┌──────────────────────────────┐
│ Important Subspaces │
│ - Null Space (Kernel) │
│ - Column Space (Range) │
│ - Row Space │
│ - Left Null Space │
└──────────────────────────────┘
├─> Rank of Matrix
├─> Nullity of Matrix
├─> Rank-Nullity Theorem
└─> Fundamental Theorem of Linear Algebra
```
### 7.2 Basis & Dimension
```
┌──────────────────────────────┐
│ Basis │
│ - Linearly independent │
│ - Spans the space │
│ - Minimum spanning set │
└──────────────────────────────┘
├─> Standard Basis
├─> Dimension = # basis vectors
├─> Change of Basis
├─> Coordinates Relative to Basis
└─> Uniqueness of Dimension
```
---
## Level 8: Linear Transformations (Requires Level 7)
### 8.1 Linear Transformations
```
┌──────────────────────────────┐
│ Transformation T: V → W │
│ - T(u + v) = T(u) + T(v) │
│ - T(cv) = cT(v) │
│ - Matrix representation │
└──────────────────────────────┘
├─> Kernel (Null Space): ker(T) = {v : T(v) = 0}
├─> Range (Image): range(T) = {T(v) : v ∈ V}
├─> Rank-Nullity Theorem
├─> One-to-one Transformations
├─> Onto Transformations
└─> Isomorphisms
┌──────────────────────────────┐
│ Standard Transformations │
│ - Rotation │
│ - Reflection │
│ - Projection │
│ - Scaling │
└──────────────────────────────┘
└─> Composition of Transformations
```
---
## Level 9: Eigenvalues & Eigenvectors (Requires Level 6-8)
### 9.1 Eigen-Theory
```
┌──────────────────────────────┐
│ Eigenvalue Problem │
│ - Av = λv │
│ - Characteristic Polynomial │
│ - det(A - λI) = 0 │
└──────────────────────────────┘
├─> Computing Eigenvalues
├─> Computing Eigenvectors
├─> Eigenspace
├─> Algebraic Multiplicity
├─> Geometric Multiplicity
└─> Diagonalization
┌──────────────────────────────┐
│ Diagonalization │
│ - A = PDP⁻¹ │
│ - D diagonal (eigenvalues) │
│ - P columns (eigenvectors) │
└──────────────────────────────┘
├─> Diagonalizable Matrices
├─> Similar Matrices
├─> Powers: Aⁿ = PDⁿP⁻¹
└─> Applications: Differential Equations, Markov Chains
```
---
## Level 10: Orthogonality (Requires Level 3, 7)
### 10.1 Orthogonal Sets
```
┌──────────────────────────────┐
│ Orthogonality │
│ - v · w = 0 │
│ - Perpendicular vectors │
│ - Orthogonal sets │
└──────────────────────────────┘
├─> Orthogonal Basis
├─> Orthonormal Basis
├─> Orthogonal Complement
└─> Orthogonal Decomposition
┌──────────────────────────────┐
│ Gram-Schmidt Process │
│ - Orthogonalization │
│ - Creates orthonormal basis │
│ - QR Decomposition │
└──────────────────────────────┘
└─> Applications: Least Squares, QR Algorithm
```
### 10.2 Orthogonal Matrices
```
┌──────────────────────────────┐
│ Orthogonal Matrix Q │
│ - QᵀQ = QQᵀ = I │
│ - Columns orthonormal │
│ - Preserves lengths │
└──────────────────────────────┘
├─> Rotation Matrices
├─> Reflection Matrices
├─> det(Q) = ±1
└─> Q⁻¹ = Qᵀ
```
---
## Level 11: Inner Product Spaces (Requires Level 3, 7, 10)
### 11.1 Inner Products
```
┌──────────────────────────────┐
│ Inner Product ⟨u, v⟩ │
│ - Generalizes dot product │
│ - 4 Axioms │
│ - Induces norm & metric │
└──────────────────────────────┘
├─> Cauchy-Schwarz Inequality
├─> Triangle Inequality
├─> Parallelogram Law
├─> Pythagorean Theorem
└─> Norm: ||v|| = √⟨v, v⟩
┌──────────────────────────────┐
│ Applications │
│ - Function spaces │
│ - Polynomial inner products │
│ - Weighted inner products │
└──────────────────────────────┘
```
---
## Level 12: Matrix Decompositions (Requires Level 6, 9, 10)
### 12.1 LU Decomposition
```
┌──────────────────────────────┐
│ LU Factorization │
│ - A = LU │
│ - L: Lower triangular │
│ - U: Upper triangular │
└──────────────────────────────┘
├─> Existence Conditions
├─> Computing LU
├─> Solving Systems with LU
├─> Computational Efficiency
└─> PLU (with Pivoting)
```
### 12.2 QR Decomposition
```
┌──────────────────────────────┐
│ QR Factorization │
│ - A = QR │
│ - Q: Orthogonal │
│ - R: Upper triangular │
└──────────────────────────────┘
├─> Gram-Schmidt Method
├─> Householder Reflections
├─> Givens Rotations
├─> Least Squares Solutions
└─> QR Algorithm for Eigenvalues
```
### 12.3 Eigenvalue Decomposition (Spectral)
```
┌──────────────────────────────┐
│ Spectral Decomposition │
│ - A = QΛQᵀ │
│ - Symmetric matrices │
│ - Real eigenvalues │
└──────────────────────────────┘
├─> Orthogonal Eigenvectors
├─> Spectral Theorem
├─> Applications
└─> Positive Definite Matrices
```
### 12.4 Singular Value Decomposition (SVD)
```
┌──────────────────────────────┐
│ SVD: A = UΣVᵀ │
│ - U: Left singular vectors │
│ - Σ: Singular values │
│ - V: Right singular vectors │
└──────────────────────────────┘
├─> Always Exists (any matrix)
├─> Singular Values
├─> Relationship to Eigenvalues
├─> Pseudoinverse (A⁺)
├─> Low-rank Approximation
├─> Image Compression
├─> Data Analysis (PCA)
└─> Recommender Systems
```
---
## Level 13: Advanced Theory (Requires Level 7-12)
### 13.1 Abstract Algebra Connections
```
┌──────────────────────────────┐
│ Algebraic Structures │
│ - Groups │
│ - Rings │
│ - Fields │
└──────────────────────────────┘
├─> Vector Space as Module
├─> Linear Algebra over Fields
└─> Quotient Spaces
```
### 13.2 Norms & Metrics
```
┌──────────────────────────────┐
│ Vector Norms │
│ - L¹ norm: Σ|vᵢ| │
│ - L² norm (Euclidean) │
│ - L∞ norm: max|vᵢ| │
│ - p-norms │
└──────────────────────────────┘
├─> Matrix Norms
├─> Frobenius Norm
├─> Operator Norm
├─> Condition Number
└─> Error Analysis
┌──────────────────────────────┐
│ Metric Spaces │
│ - Distance Function │
│ - Metric Properties │
│ - Induced by Norms │
└──────────────────────────────┘
```
---
## Level 14: Applications - Machine Learning (Requires All Previous)
### 14.1 ML Fundamentals
```
┌──────────────────────────────┐
│ Linear Regression │
│ - Normal Equations │
│ - θ = (XᵀX)⁻¹Xᵀy │
│ - Least Squares │
└──────────────────────────────┘
├─> Gradient Descent
├─> Ridge Regression (L2)
├─> Lasso Regression (L1)
└─> Regularization
┌──────────────────────────────┐
│ Dimensionality Reduction │
│ - PCA (Principal Components)│
│ - SVD for PCA │
│ - Explained Variance │
└──────────────────────────────┘
├─> Eigenfaces
├─> Feature Extraction
├─> Data Visualization
└─> Compression
```
### 14.2 Neural Networks
```
┌──────────────────────────────┐
│ Neural Network Math │
│ - Forward Pass: y = Wx + b │
│ - Backpropagation │
│ - Gradient Computation │
└──────────────────────────────┘
├─> Weight Matrices
├─> Activation Functions
├─> Loss Gradients
└─> Optimization (SGD, Adam)
```
---
## Level 15: Applications - Graphics (Requires Level 4, 8)
### 15.1 Geometric Transformations
```
┌──────────────────────────────┐
│ 2D Transformations │
│ - Translation │
│ - Rotation │
│ - Scaling │
│ - Shearing │
└──────────────────────────────┘
├─> Homogeneous Coordinates
├─> Transformation Matrices
├─> Composition
└─> Inverse Transformations
┌──────────────────────────────┐
│ 3D Graphics │
│ - 3D Rotations │
│ - View Transformations │
│ - Projection (Orthographic) │
│ - Projection (Perspective) │
└──────────────────────────────┘
├─> Camera Matrices
├─> Model-View-Projection
├─> Quaternions
└─> Euler Angles
```
---
## 🔗 Dependency Map Summary
### Critical Learning Path
```
Level 1 (Algebra Review)
Level 2 (Vectors - Geometric)
Level 3 (Vector Products)
Level 4 (Matrices - Basics)
Level 5 (Linear Systems)
Level 6 (Inverses & Determinants)
Level 7 (Vector Spaces) [Theoretical Branch]
Level 8 (Linear Transformations)
Level 9 (Eigenvalues) ←─────────┐
↓ │
Level 10 (Orthogonality) ───────┤ Can parallelize
↓ │
Level 11 (Inner Products) ──────┘
Level 12 (Decompositions)
Level 13 (Advanced Theory) ←────┐
↓ │ Can parallelize
Level 14 (ML Applications) ─────┤
↓ │
Level 15 (Graphics Applications)┘
```
### Parallel Learning Opportunities
- Levels 9, 10, 11 can be learned in parallel after Level 8
- Level 13 (theory) can parallel with Levels 14-15 (applications)
- Applications (14-15) depend on decompositions but can be learned in any order
---
## 📊 Prerequisite Matrix
| Topic | Must Know First | Can Learn In Parallel |
|-------|----------------|----------------------|
| Dot Product | Vector basics | Cross product |
| Matrices | Vectors | - |
| Matrix Mult | Matrix basics | Transpose |
| Linear Systems | Matrix multiplication | - |
| Determinants | Matrix multiplication | Inverses |
| Inverses | Determinants, Systems | - |
| Vector Spaces | Linear systems, Span | - |
| Eigenvalues | Determinants, Vector spaces | - |
| Orthogonality | Dot product, Basis | Inner products |
| SVD | Eigenvalues, Orthogonality | - |
| PCA | SVD, Statistics basics | - |
---
## 🎯 Learning Strategies
### Geometric First, Then Abstract
1. Start with 2D/3D vectors (can visualize)
2. Build geometric intuition
3. Generalize to n dimensions
4. Then study abstract theory
5. Apply to real problems
### Computation Supports Theory
1. Solve many numerical examples
2. Use Python/MATLAB to verify
3. See patterns emerge
4. Then learn why (proofs)
5. Deepen understanding
### Applications Motivate Learning
1. See where linear algebra is used
2. Understand why we need it
3. Learn concepts to solve problems
4. Apply immediately
5. Build projects
---
This knowledge graph ensures you build strong foundations before tackling abstract concepts and applications!