first working version

This commit is contained in:
howard
2025-10-22 20:14:31 +08:00
parent c9767b830b
commit 8dc869634e
118 changed files with 22518 additions and 0 deletions

View File

@@ -0,0 +1,482 @@
# Python Advanced Learning - Master Plan
## 🎯 Goal: Advanced Python Mastery
This comprehensive plan will guide you from fundamentals to advanced Python expertise, covering everything from basics to expert-level topics.
## 📊 Learning Journey Overview
**Total Duration:** 12-18 months (depending on pace)
**Target Level:** Advanced/Expert Python Developer
**Daily Commitment:** 2-3 hours recommended
## 🗺️ Learning Path Structure
```
Phase 1: Foundations (2-3 months)
└─> Python Basics & Core Concepts
Phase 2: Intermediate (3-4 months)
└─> Data Structures, OOP, Functional Programming
Phase 3: Advanced (4-5 months)
└─> Metaprogramming, Concurrency, Performance
Phase 4: Expert (3-4 months)
└─> Advanced Patterns, System Design, Best Practices
Phase 5: Specialization (Ongoing)
└─> Choose your domain (Web, Data Science, DevOps, etc.)
```
## 📚 Learning Modules Breakdown
### Phase 1: Python Foundations (Beginner to Intermediate)
**Duration:** 2-3 months | **Difficulty:** ⭐⭐☆☆☆
1. **Module 1.1: Python Basics** (2 weeks)
- Installation & Environment Setup
- Variables, Data Types, Operators
- Input/Output, String Operations
- Control Flow (if/elif/else)
- Loops (for, while, break, continue)
- Basic Error Handling
2. **Module 1.2: Data Structures** (2 weeks)
- Lists, Tuples, Sets
- Dictionaries
- List Comprehensions
- Dictionary & Set Comprehensions
- Collections Module (namedtuple, defaultdict, Counter, deque)
3. **Module 1.3: Functions & Modules** (2 weeks)
- Function Definition & Arguments
- *args and **kwargs
- Lambda Functions
- Map, Filter, Reduce
- Modules & Packages
- Import System
4. **Module 1.4: File Handling & Exception Handling** (1 week)
- Reading & Writing Files
- Context Managers (with statement)
- Exception Types
- Try/Except/Finally
- Custom Exceptions
- Raising Exceptions
5. **Module 1.5: Object-Oriented Programming Basics** (3 weeks)
- Classes & Objects
- Attributes & Methods
- __init__ and __str__
- Inheritance (Single & Multiple)
- Encapsulation
- Polymorphism
- Method Overriding
---
### Phase 2: Intermediate Python (Intermediate)
**Duration:** 3-4 months | **Difficulty:** ⭐⭐⭐☆☆
6. **Module 2.1: Advanced OOP** (2 weeks)
- Property Decorators (@property)
- Class Methods & Static Methods
- Abstract Base Classes (ABC)
- Method Resolution Order (MRO)
- Multiple Inheritance & Mixins
- Composition vs Inheritance
7. **Module 2.2: Iterators & Generators** (2 weeks)
- Iterator Protocol (__iter__, __next__)
- Generator Functions (yield)
- Generator Expressions
- itertools Module
- Memory Efficiency with Generators
- Coroutines Basics
8. **Module 2.3: Decorators** (2 weeks)
- Function Decorators
- Class Decorators
- Decorator Patterns
- Functools Module (wraps, lru_cache, partial)
- Chaining Decorators
- Decorators with Arguments
9. **Module 2.4: Context Managers** (1 week)
- __enter__ and __exit__
- contextlib Module
- Custom Context Managers
- contextmanager Decorator
- Resource Management Patterns
10. **Module 2.5: Regular Expressions** (1 week)
- Regex Syntax & Patterns
- re Module Functions
- Match Objects
- Groups & Capturing
- Lookahead & Lookbehind
- Regex Performance
11. **Module 2.6: Functional Programming** (2 weeks)
- First-Class Functions
- Higher-Order Functions
- Closures
- Partial Application
- Immutability Concepts
- Functional Tools (map, filter, reduce)
- operator Module
12. **Module 2.7: Type Hints & Static Typing** (2 weeks)
- Type Annotations
- typing Module (List, Dict, Optional, Union)
- Generic Types
- Protocol & TypedDict
- mypy Static Type Checker
- Type Checking Best Practices
---
### Phase 3: Advanced Python
**Duration:** 4-5 months | **Difficulty:** ⭐⭐⭐⭐☆
13. **Module 3.1: Metaclasses** (2 weeks)
- What are Metaclasses?
- type() Function
- __new__ vs __init__
- Creating Custom Metaclasses
- Metaclass Use Cases
- Class Creation Process
14. **Module 3.2: Descriptors** (2 weeks)
- Descriptor Protocol
- __get__, __set__, __delete__
- Data vs Non-Data Descriptors
- Property Implementation
- Descriptor Use Cases
- Managed Attributes
15. **Module 3.3: Magic Methods (Dunder Methods)** (2 weeks)
- Operator Overloading
- __repr__ vs __str__
- __call__, __getitem__, __setitem__
- __len__, __contains__
- Comparison Methods (__eq__, __lt__, etc.)
- Arithmetic Methods
- Context Manager Methods
16. **Module 3.4: Memory Management** (2 weeks)
- Python Memory Model
- Reference Counting
- Garbage Collection
- gc Module
- Memory Profiling
- __slots__ for Memory Optimization
- Weak References
17. **Module 3.5: Concurrency - Threading** (2 weeks)
- threading Module
- Thread Objects
- Locks & RLocks
- Semaphores & Events
- Thread-Safe Queues
- GIL (Global Interpreter Lock)
- Thread Pool Executor
18. **Module 3.6: Concurrency - Multiprocessing** (2 weeks)
- multiprocessing Module
- Process Objects
- Inter-Process Communication (Pipes, Queues)
- Shared Memory (Value, Array, Manager)
- Process Pool Executor
- When to Use vs Threading
19. **Module 3.7: Asynchronous Programming** (3 weeks)
- asyncio Fundamentals
- async/await Syntax
- Event Loop
- Coroutines & Tasks
- Futures
- asyncio Streams
- aiohttp for Async HTTP
- Async Context Managers & Iterators
20. **Module 3.8: Performance Optimization** (2 weeks)
- Profiling (cProfile, line_profiler)
- Benchmarking (timeit)
- Performance Best Practices
- Algorithm Optimization
- Data Structure Selection
- Caching Strategies
- JIT Compilation (Numba, PyPy)
---
### Phase 4: Expert Python
**Duration:** 3-4 months | **Difficulty:** ⭐⭐⭐⭐⭐
21. **Module 4.1: Advanced Design Patterns** (3 weeks)
- Creational Patterns (Singleton, Factory, Builder)
- Structural Patterns (Adapter, Decorator, Facade)
- Behavioral Patterns (Observer, Strategy, Command)
- Python-Specific Patterns
- Anti-Patterns to Avoid
22. **Module 4.2: Testing & Quality Assurance** (3 weeks)
- unittest Framework
- pytest Framework
- Test Fixtures & Parametrization
- Mocking & Patching
- Coverage Analysis
- Test-Driven Development (TDD)
- Property-Based Testing (Hypothesis)
23. **Module 4.3: Debugging & Profiling** (2 weeks)
- pdb Debugger
- Remote Debugging
- Memory Leak Detection
- Performance Profiling
- Logging Best Practices
- Error Tracking
24. **Module 4.4: Package Development** (2 weeks)
- Project Structure
- setup.py & pyproject.toml
- setuptools & pip
- Virtual Environments (venv, virtualenv)
- Dependency Management (pip, Poetry, pipenv)
- Publishing to PyPI
25. **Module 4.5: C Extensions & Cython** (2 weeks)
- Python C API
- ctypes & cffi
- Cython Basics
- Performance with Cython
- Interfacing with C Libraries
- When to Use C Extensions
26. **Module 4.6: Advanced Data Manipulation** (2 weeks)
- NumPy Fundamentals
- Pandas Basics
- Data Processing Patterns
- Memory-Efficient Data Processing
- Working with Large Datasets
27. **Module 4.7: Network Programming** (2 weeks)
- socket Module
- TCP/IP Programming
- UDP Programming
- HTTP Clients & Servers
- WebSocket Programming
- Network Security Basics
28. **Module 4.8: Database Programming** (2 weeks)
- DB-API 2.0 Standard
- SQLite, PostgreSQL, MySQL
- Connection Pools
- ORM Concepts (SQLAlchemy basics)
- NoSQL with Python (MongoDB, Redis)
- Database Best Practices
---
### Phase 5: Python Specializations (Choose Your Path)
**Duration:** Ongoing | **Difficulty:** ⭐⭐⭐⭐⭐
29. **Specialization A: Web Development**
- Django Framework (Advanced)
- Flask/FastAPI
- REST API Design
- GraphQL
- WebSockets
- Authentication & Authorization
- Web Security
- Deployment & Scaling
30. **Specialization B: Data Science & ML**
- Advanced NumPy & Pandas
- Data Visualization (Matplotlib, Seaborn)
- Scikit-learn
- TensorFlow/PyTorch Basics
- Data Pipelines
- Feature Engineering
- Model Deployment
31. **Specialization C: DevOps & Automation**
- System Administration with Python
- Automation Scripts
- CI/CD Pipelines
- Docker & Kubernetes
- Infrastructure as Code
- Monitoring & Logging
- Cloud Services (AWS, GCP, Azure)
32. **Specialization D: Security & Cryptography**
- cryptography Module
- Secure Coding Practices
- Penetration Testing
- Web Security
- Authentication Systems
- Encryption & Hashing
---
## 📈 Progress Tracking
### Mastery Levels
- **Level 0:** Unfamiliar - Never encountered
- **Level 1:** Aware - Know it exists, basic understanding
- **Level 2:** Competent - Can use with documentation
- **Level 3:** Proficient - Can use without documentation
- **Level 4:** Expert - Can teach others, optimize, debug complex issues
### Weekly Goals
- Complete 1-2 modules per month
- Practice coding daily (30-60 minutes minimum)
- Build 1 small project per week
- Read Python source code weekly
- Contribute to open source monthly
### Monthly Assessments
- Take comprehensive exam covering month's topics
- Build one medium-sized project
- Write blog post explaining learned concepts
- Review and refactor old code
---
## 🎓 Learning Resources
### Books (Recommended Reading Order)
1. "Python Crash Course" by Eric Matthes (Foundations)
2. "Fluent Python" by Luciano Ramalho (Intermediate-Advanced)
3. "Effective Python" by Brett Slatkin (Best Practices)
4. "Python Cookbook" by David Beazley (Advanced Techniques)
5. "High Performance Python" by Micha Gorelick (Optimization)
### Online Resources
- Official Python Documentation (python.org)
- Real Python (realpython.com)
- Python Enhancement Proposals (PEPs)
- Python Package Index (PyPI)
- Stack Overflow Python Tag
### Practice Platforms
- LeetCode (Algorithm practice)
- HackerRank (Python challenges)
- Codewars (Python kata)
- Project Euler (Math/Programming problems)
- Real-world projects on GitHub
---
## 🏆 Milestones & Achievements
### Milestone 1: Python Basics Complete (Month 2-3)
- ✅ Can write basic scripts
- ✅ Understand all basic data structures
- ✅ Can use functions and modules
- ✅ Handle files and exceptions
- 🎯 **Project:** Build a CLI todo app
### Milestone 2: Intermediate Python (Month 5-7)
- ✅ Master OOP concepts
- ✅ Write decorators and generators
- ✅ Use type hints effectively
- ✅ Understand functional programming
- 🎯 **Project:** Build a web scraper with data storage
### Milestone 3: Advanced Python (Month 9-12)
- ✅ Understand metaclasses and descriptors
- ✅ Master async programming
- ✅ Optimize code performance
- ✅ Write concurrent programs
- 🎯 **Project:** Build an async web server
### Milestone 4: Expert Python (Month 13-16)
- ✅ Master design patterns
- ✅ Write comprehensive tests
- ✅ Create distributable packages
- ✅ Understand Python internals
- 🎯 **Project:** Publish an open-source package
### Milestone 5: Specialization (Month 17-18+)
- ✅ Master chosen specialization
- ✅ Contribute to major projects
- ✅ Build production-ready applications
- 🎯 **Project:** Major portfolio project
---
## 📝 Assessment Strategy
### Weekly Quizzes
- 10-15 questions on week's topics
- Mix of single choice, multiple choice, true/false
- "I don't know" option available for honest assessment
### Monthly Comprehensive Exams
- 30-50 questions covering all monthly topics
- Includes coding exercises
- Auto-graded with detailed feedback
### Quarterly Projects
- Build substantial projects
- Code review and feedback
- Real-world application focus
### Continuous Assessment
- Track time spent on each topic
- Monitor quiz/exam scores
- Identify weak areas for review
- Adjust learning pace as needed
---
## 🚀 Getting Started
### Week 1 Action Plan
1. Set up Python development environment
2. Install essential tools (IDE, Git)
3. Read "Python Basics" module
4. Complete 5 beginner exercises
5. Take first quiz on basics
### Daily Study Routine
- **Morning (30 min):** Read theory/documentation
- **Afternoon (60 min):** Hands-on coding practice
- **Evening (30 min):** Review, quiz, or project work
### Weekend Activities
- Build small projects
- Read Python source code
- Watch Python conference talks
- Contribute to open source
---
## 💡 Learning Tips
1. **Code Every Day:** Even 30 minutes makes a difference
2. **Read Others' Code:** Learn from experienced developers
3. **Build Projects:** Apply what you learn immediately
4. **Teach Others:** Best way to solidify understanding
5. **Review Regularly:** Spaced repetition is key
6. **Don't Rush:** Deep understanding > speed
7. **Ask Questions:** Engage with Python community
8. **Stay Updated:** Follow Python news and PEPs
---
## 🔗 Next Steps
1. Review the detailed modules in `01_KNOWLEDGE_GRAPH.md`
2. Check your current level in `02_ASSESSMENT.md`
3. Follow the weekly schedule in `03_WEEKLY_SCHEDULE.md`
4. Track progress in `04_PROGRESS_TRACKER.md`
5. Start with Module 1.1 in `modules/` folder
---
**Remember:** This is a marathon, not a sprint. Focus on deep understanding rather than rushing through topics. Happy learning! 🐍