first working version
This commit is contained in:
482
learning_plans/python/00_PYTHON_MASTER_PLAN.md
Normal file
482
learning_plans/python/00_PYTHON_MASTER_PLAN.md
Normal file
@@ -0,0 +1,482 @@
|
||||
# Python Advanced Learning - Master Plan
|
||||
|
||||
## 🎯 Goal: Advanced Python Mastery
|
||||
|
||||
This comprehensive plan will guide you from fundamentals to advanced Python expertise, covering everything from basics to expert-level topics.
|
||||
|
||||
## 📊 Learning Journey Overview
|
||||
|
||||
**Total Duration:** 12-18 months (depending on pace)
|
||||
**Target Level:** Advanced/Expert Python Developer
|
||||
**Daily Commitment:** 2-3 hours recommended
|
||||
|
||||
## 🗺️ Learning Path Structure
|
||||
|
||||
```
|
||||
Phase 1: Foundations (2-3 months)
|
||||
└─> Python Basics & Core Concepts
|
||||
|
||||
Phase 2: Intermediate (3-4 months)
|
||||
└─> Data Structures, OOP, Functional Programming
|
||||
|
||||
Phase 3: Advanced (4-5 months)
|
||||
└─> Metaprogramming, Concurrency, Performance
|
||||
|
||||
Phase 4: Expert (3-4 months)
|
||||
└─> Advanced Patterns, System Design, Best Practices
|
||||
|
||||
Phase 5: Specialization (Ongoing)
|
||||
└─> Choose your domain (Web, Data Science, DevOps, etc.)
|
||||
```
|
||||
|
||||
## 📚 Learning Modules Breakdown
|
||||
|
||||
### Phase 1: Python Foundations (Beginner to Intermediate)
|
||||
**Duration:** 2-3 months | **Difficulty:** ⭐⭐☆☆☆
|
||||
|
||||
1. **Module 1.1: Python Basics** (2 weeks)
|
||||
- Installation & Environment Setup
|
||||
- Variables, Data Types, Operators
|
||||
- Input/Output, String Operations
|
||||
- Control Flow (if/elif/else)
|
||||
- Loops (for, while, break, continue)
|
||||
- Basic Error Handling
|
||||
|
||||
2. **Module 1.2: Data Structures** (2 weeks)
|
||||
- Lists, Tuples, Sets
|
||||
- Dictionaries
|
||||
- List Comprehensions
|
||||
- Dictionary & Set Comprehensions
|
||||
- Collections Module (namedtuple, defaultdict, Counter, deque)
|
||||
|
||||
3. **Module 1.3: Functions & Modules** (2 weeks)
|
||||
- Function Definition & Arguments
|
||||
- *args and **kwargs
|
||||
- Lambda Functions
|
||||
- Map, Filter, Reduce
|
||||
- Modules & Packages
|
||||
- Import System
|
||||
|
||||
4. **Module 1.4: File Handling & Exception Handling** (1 week)
|
||||
- Reading & Writing Files
|
||||
- Context Managers (with statement)
|
||||
- Exception Types
|
||||
- Try/Except/Finally
|
||||
- Custom Exceptions
|
||||
- Raising Exceptions
|
||||
|
||||
5. **Module 1.5: Object-Oriented Programming Basics** (3 weeks)
|
||||
- Classes & Objects
|
||||
- Attributes & Methods
|
||||
- __init__ and __str__
|
||||
- Inheritance (Single & Multiple)
|
||||
- Encapsulation
|
||||
- Polymorphism
|
||||
- Method Overriding
|
||||
|
||||
---
|
||||
|
||||
### Phase 2: Intermediate Python (Intermediate)
|
||||
**Duration:** 3-4 months | **Difficulty:** ⭐⭐⭐☆☆
|
||||
|
||||
6. **Module 2.1: Advanced OOP** (2 weeks)
|
||||
- Property Decorators (@property)
|
||||
- Class Methods & Static Methods
|
||||
- Abstract Base Classes (ABC)
|
||||
- Method Resolution Order (MRO)
|
||||
- Multiple Inheritance & Mixins
|
||||
- Composition vs Inheritance
|
||||
|
||||
7. **Module 2.2: Iterators & Generators** (2 weeks)
|
||||
- Iterator Protocol (__iter__, __next__)
|
||||
- Generator Functions (yield)
|
||||
- Generator Expressions
|
||||
- itertools Module
|
||||
- Memory Efficiency with Generators
|
||||
- Coroutines Basics
|
||||
|
||||
8. **Module 2.3: Decorators** (2 weeks)
|
||||
- Function Decorators
|
||||
- Class Decorators
|
||||
- Decorator Patterns
|
||||
- Functools Module (wraps, lru_cache, partial)
|
||||
- Chaining Decorators
|
||||
- Decorators with Arguments
|
||||
|
||||
9. **Module 2.4: Context Managers** (1 week)
|
||||
- __enter__ and __exit__
|
||||
- contextlib Module
|
||||
- Custom Context Managers
|
||||
- contextmanager Decorator
|
||||
- Resource Management Patterns
|
||||
|
||||
10. **Module 2.5: Regular Expressions** (1 week)
|
||||
- Regex Syntax & Patterns
|
||||
- re Module Functions
|
||||
- Match Objects
|
||||
- Groups & Capturing
|
||||
- Lookahead & Lookbehind
|
||||
- Regex Performance
|
||||
|
||||
11. **Module 2.6: Functional Programming** (2 weeks)
|
||||
- First-Class Functions
|
||||
- Higher-Order Functions
|
||||
- Closures
|
||||
- Partial Application
|
||||
- Immutability Concepts
|
||||
- Functional Tools (map, filter, reduce)
|
||||
- operator Module
|
||||
|
||||
12. **Module 2.7: Type Hints & Static Typing** (2 weeks)
|
||||
- Type Annotations
|
||||
- typing Module (List, Dict, Optional, Union)
|
||||
- Generic Types
|
||||
- Protocol & TypedDict
|
||||
- mypy Static Type Checker
|
||||
- Type Checking Best Practices
|
||||
|
||||
---
|
||||
|
||||
### Phase 3: Advanced Python
|
||||
**Duration:** 4-5 months | **Difficulty:** ⭐⭐⭐⭐☆
|
||||
|
||||
13. **Module 3.1: Metaclasses** (2 weeks)
|
||||
- What are Metaclasses?
|
||||
- type() Function
|
||||
- __new__ vs __init__
|
||||
- Creating Custom Metaclasses
|
||||
- Metaclass Use Cases
|
||||
- Class Creation Process
|
||||
|
||||
14. **Module 3.2: Descriptors** (2 weeks)
|
||||
- Descriptor Protocol
|
||||
- __get__, __set__, __delete__
|
||||
- Data vs Non-Data Descriptors
|
||||
- Property Implementation
|
||||
- Descriptor Use Cases
|
||||
- Managed Attributes
|
||||
|
||||
15. **Module 3.3: Magic Methods (Dunder Methods)** (2 weeks)
|
||||
- Operator Overloading
|
||||
- __repr__ vs __str__
|
||||
- __call__, __getitem__, __setitem__
|
||||
- __len__, __contains__
|
||||
- Comparison Methods (__eq__, __lt__, etc.)
|
||||
- Arithmetic Methods
|
||||
- Context Manager Methods
|
||||
|
||||
16. **Module 3.4: Memory Management** (2 weeks)
|
||||
- Python Memory Model
|
||||
- Reference Counting
|
||||
- Garbage Collection
|
||||
- gc Module
|
||||
- Memory Profiling
|
||||
- __slots__ for Memory Optimization
|
||||
- Weak References
|
||||
|
||||
17. **Module 3.5: Concurrency - Threading** (2 weeks)
|
||||
- threading Module
|
||||
- Thread Objects
|
||||
- Locks & RLocks
|
||||
- Semaphores & Events
|
||||
- Thread-Safe Queues
|
||||
- GIL (Global Interpreter Lock)
|
||||
- Thread Pool Executor
|
||||
|
||||
18. **Module 3.6: Concurrency - Multiprocessing** (2 weeks)
|
||||
- multiprocessing Module
|
||||
- Process Objects
|
||||
- Inter-Process Communication (Pipes, Queues)
|
||||
- Shared Memory (Value, Array, Manager)
|
||||
- Process Pool Executor
|
||||
- When to Use vs Threading
|
||||
|
||||
19. **Module 3.7: Asynchronous Programming** (3 weeks)
|
||||
- asyncio Fundamentals
|
||||
- async/await Syntax
|
||||
- Event Loop
|
||||
- Coroutines & Tasks
|
||||
- Futures
|
||||
- asyncio Streams
|
||||
- aiohttp for Async HTTP
|
||||
- Async Context Managers & Iterators
|
||||
|
||||
20. **Module 3.8: Performance Optimization** (2 weeks)
|
||||
- Profiling (cProfile, line_profiler)
|
||||
- Benchmarking (timeit)
|
||||
- Performance Best Practices
|
||||
- Algorithm Optimization
|
||||
- Data Structure Selection
|
||||
- Caching Strategies
|
||||
- JIT Compilation (Numba, PyPy)
|
||||
|
||||
---
|
||||
|
||||
### Phase 4: Expert Python
|
||||
**Duration:** 3-4 months | **Difficulty:** ⭐⭐⭐⭐⭐
|
||||
|
||||
21. **Module 4.1: Advanced Design Patterns** (3 weeks)
|
||||
- Creational Patterns (Singleton, Factory, Builder)
|
||||
- Structural Patterns (Adapter, Decorator, Facade)
|
||||
- Behavioral Patterns (Observer, Strategy, Command)
|
||||
- Python-Specific Patterns
|
||||
- Anti-Patterns to Avoid
|
||||
|
||||
22. **Module 4.2: Testing & Quality Assurance** (3 weeks)
|
||||
- unittest Framework
|
||||
- pytest Framework
|
||||
- Test Fixtures & Parametrization
|
||||
- Mocking & Patching
|
||||
- Coverage Analysis
|
||||
- Test-Driven Development (TDD)
|
||||
- Property-Based Testing (Hypothesis)
|
||||
|
||||
23. **Module 4.3: Debugging & Profiling** (2 weeks)
|
||||
- pdb Debugger
|
||||
- Remote Debugging
|
||||
- Memory Leak Detection
|
||||
- Performance Profiling
|
||||
- Logging Best Practices
|
||||
- Error Tracking
|
||||
|
||||
24. **Module 4.4: Package Development** (2 weeks)
|
||||
- Project Structure
|
||||
- setup.py & pyproject.toml
|
||||
- setuptools & pip
|
||||
- Virtual Environments (venv, virtualenv)
|
||||
- Dependency Management (pip, Poetry, pipenv)
|
||||
- Publishing to PyPI
|
||||
|
||||
25. **Module 4.5: C Extensions & Cython** (2 weeks)
|
||||
- Python C API
|
||||
- ctypes & cffi
|
||||
- Cython Basics
|
||||
- Performance with Cython
|
||||
- Interfacing with C Libraries
|
||||
- When to Use C Extensions
|
||||
|
||||
26. **Module 4.6: Advanced Data Manipulation** (2 weeks)
|
||||
- NumPy Fundamentals
|
||||
- Pandas Basics
|
||||
- Data Processing Patterns
|
||||
- Memory-Efficient Data Processing
|
||||
- Working with Large Datasets
|
||||
|
||||
27. **Module 4.7: Network Programming** (2 weeks)
|
||||
- socket Module
|
||||
- TCP/IP Programming
|
||||
- UDP Programming
|
||||
- HTTP Clients & Servers
|
||||
- WebSocket Programming
|
||||
- Network Security Basics
|
||||
|
||||
28. **Module 4.8: Database Programming** (2 weeks)
|
||||
- DB-API 2.0 Standard
|
||||
- SQLite, PostgreSQL, MySQL
|
||||
- Connection Pools
|
||||
- ORM Concepts (SQLAlchemy basics)
|
||||
- NoSQL with Python (MongoDB, Redis)
|
||||
- Database Best Practices
|
||||
|
||||
---
|
||||
|
||||
### Phase 5: Python Specializations (Choose Your Path)
|
||||
**Duration:** Ongoing | **Difficulty:** ⭐⭐⭐⭐⭐
|
||||
|
||||
29. **Specialization A: Web Development**
|
||||
- Django Framework (Advanced)
|
||||
- Flask/FastAPI
|
||||
- REST API Design
|
||||
- GraphQL
|
||||
- WebSockets
|
||||
- Authentication & Authorization
|
||||
- Web Security
|
||||
- Deployment & Scaling
|
||||
|
||||
30. **Specialization B: Data Science & ML**
|
||||
- Advanced NumPy & Pandas
|
||||
- Data Visualization (Matplotlib, Seaborn)
|
||||
- Scikit-learn
|
||||
- TensorFlow/PyTorch Basics
|
||||
- Data Pipelines
|
||||
- Feature Engineering
|
||||
- Model Deployment
|
||||
|
||||
31. **Specialization C: DevOps & Automation**
|
||||
- System Administration with Python
|
||||
- Automation Scripts
|
||||
- CI/CD Pipelines
|
||||
- Docker & Kubernetes
|
||||
- Infrastructure as Code
|
||||
- Monitoring & Logging
|
||||
- Cloud Services (AWS, GCP, Azure)
|
||||
|
||||
32. **Specialization D: Security & Cryptography**
|
||||
- cryptography Module
|
||||
- Secure Coding Practices
|
||||
- Penetration Testing
|
||||
- Web Security
|
||||
- Authentication Systems
|
||||
- Encryption & Hashing
|
||||
|
||||
---
|
||||
|
||||
## 📈 Progress Tracking
|
||||
|
||||
### Mastery Levels
|
||||
- **Level 0:** Unfamiliar - Never encountered
|
||||
- **Level 1:** Aware - Know it exists, basic understanding
|
||||
- **Level 2:** Competent - Can use with documentation
|
||||
- **Level 3:** Proficient - Can use without documentation
|
||||
- **Level 4:** Expert - Can teach others, optimize, debug complex issues
|
||||
|
||||
### Weekly Goals
|
||||
- Complete 1-2 modules per month
|
||||
- Practice coding daily (30-60 minutes minimum)
|
||||
- Build 1 small project per week
|
||||
- Read Python source code weekly
|
||||
- Contribute to open source monthly
|
||||
|
||||
### Monthly Assessments
|
||||
- Take comprehensive exam covering month's topics
|
||||
- Build one medium-sized project
|
||||
- Write blog post explaining learned concepts
|
||||
- Review and refactor old code
|
||||
|
||||
---
|
||||
|
||||
## 🎓 Learning Resources
|
||||
|
||||
### Books (Recommended Reading Order)
|
||||
1. "Python Crash Course" by Eric Matthes (Foundations)
|
||||
2. "Fluent Python" by Luciano Ramalho (Intermediate-Advanced)
|
||||
3. "Effective Python" by Brett Slatkin (Best Practices)
|
||||
4. "Python Cookbook" by David Beazley (Advanced Techniques)
|
||||
5. "High Performance Python" by Micha Gorelick (Optimization)
|
||||
|
||||
### Online Resources
|
||||
- Official Python Documentation (python.org)
|
||||
- Real Python (realpython.com)
|
||||
- Python Enhancement Proposals (PEPs)
|
||||
- Python Package Index (PyPI)
|
||||
- Stack Overflow Python Tag
|
||||
|
||||
### Practice Platforms
|
||||
- LeetCode (Algorithm practice)
|
||||
- HackerRank (Python challenges)
|
||||
- Codewars (Python kata)
|
||||
- Project Euler (Math/Programming problems)
|
||||
- Real-world projects on GitHub
|
||||
|
||||
---
|
||||
|
||||
## 🏆 Milestones & Achievements
|
||||
|
||||
### Milestone 1: Python Basics Complete (Month 2-3)
|
||||
- ✅ Can write basic scripts
|
||||
- ✅ Understand all basic data structures
|
||||
- ✅ Can use functions and modules
|
||||
- ✅ Handle files and exceptions
|
||||
- 🎯 **Project:** Build a CLI todo app
|
||||
|
||||
### Milestone 2: Intermediate Python (Month 5-7)
|
||||
- ✅ Master OOP concepts
|
||||
- ✅ Write decorators and generators
|
||||
- ✅ Use type hints effectively
|
||||
- ✅ Understand functional programming
|
||||
- 🎯 **Project:** Build a web scraper with data storage
|
||||
|
||||
### Milestone 3: Advanced Python (Month 9-12)
|
||||
- ✅ Understand metaclasses and descriptors
|
||||
- ✅ Master async programming
|
||||
- ✅ Optimize code performance
|
||||
- ✅ Write concurrent programs
|
||||
- 🎯 **Project:** Build an async web server
|
||||
|
||||
### Milestone 4: Expert Python (Month 13-16)
|
||||
- ✅ Master design patterns
|
||||
- ✅ Write comprehensive tests
|
||||
- ✅ Create distributable packages
|
||||
- ✅ Understand Python internals
|
||||
- 🎯 **Project:** Publish an open-source package
|
||||
|
||||
### Milestone 5: Specialization (Month 17-18+)
|
||||
- ✅ Master chosen specialization
|
||||
- ✅ Contribute to major projects
|
||||
- ✅ Build production-ready applications
|
||||
- 🎯 **Project:** Major portfolio project
|
||||
|
||||
---
|
||||
|
||||
## 📝 Assessment Strategy
|
||||
|
||||
### Weekly Quizzes
|
||||
- 10-15 questions on week's topics
|
||||
- Mix of single choice, multiple choice, true/false
|
||||
- "I don't know" option available for honest assessment
|
||||
|
||||
### Monthly Comprehensive Exams
|
||||
- 30-50 questions covering all monthly topics
|
||||
- Includes coding exercises
|
||||
- Auto-graded with detailed feedback
|
||||
|
||||
### Quarterly Projects
|
||||
- Build substantial projects
|
||||
- Code review and feedback
|
||||
- Real-world application focus
|
||||
|
||||
### Continuous Assessment
|
||||
- Track time spent on each topic
|
||||
- Monitor quiz/exam scores
|
||||
- Identify weak areas for review
|
||||
- Adjust learning pace as needed
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Getting Started
|
||||
|
||||
### Week 1 Action Plan
|
||||
1. Set up Python development environment
|
||||
2. Install essential tools (IDE, Git)
|
||||
3. Read "Python Basics" module
|
||||
4. Complete 5 beginner exercises
|
||||
5. Take first quiz on basics
|
||||
|
||||
### Daily Study Routine
|
||||
- **Morning (30 min):** Read theory/documentation
|
||||
- **Afternoon (60 min):** Hands-on coding practice
|
||||
- **Evening (30 min):** Review, quiz, or project work
|
||||
|
||||
### Weekend Activities
|
||||
- Build small projects
|
||||
- Read Python source code
|
||||
- Watch Python conference talks
|
||||
- Contribute to open source
|
||||
|
||||
---
|
||||
|
||||
## 💡 Learning Tips
|
||||
|
||||
1. **Code Every Day:** Even 30 minutes makes a difference
|
||||
2. **Read Others' Code:** Learn from experienced developers
|
||||
3. **Build Projects:** Apply what you learn immediately
|
||||
4. **Teach Others:** Best way to solidify understanding
|
||||
5. **Review Regularly:** Spaced repetition is key
|
||||
6. **Don't Rush:** Deep understanding > speed
|
||||
7. **Ask Questions:** Engage with Python community
|
||||
8. **Stay Updated:** Follow Python news and PEPs
|
||||
|
||||
---
|
||||
|
||||
## 🔗 Next Steps
|
||||
|
||||
1. Review the detailed modules in `01_KNOWLEDGE_GRAPH.md`
|
||||
2. Check your current level in `02_ASSESSMENT.md`
|
||||
3. Follow the weekly schedule in `03_WEEKLY_SCHEDULE.md`
|
||||
4. Track progress in `04_PROGRESS_TRACKER.md`
|
||||
5. Start with Module 1.1 in `modules/` folder
|
||||
|
||||
---
|
||||
|
||||
**Remember:** This is a marathon, not a sprint. Focus on deep understanding rather than rushing through topics. Happy learning! 🐍
|
||||
|
||||
Reference in New Issue
Block a user