Files
lnet_tutor/learning_plans/python/00_PYTHON_MASTER_PLAN.md
2025-10-22 20:14:31 +08:00

13 KiB

Python Advanced Learning - Master Plan

🎯 Goal: Advanced Python Mastery

This comprehensive plan will guide you from fundamentals to advanced Python expertise, covering everything from basics to expert-level topics.

📊 Learning Journey Overview

Total Duration: 12-18 months (depending on pace) Target Level: Advanced/Expert Python Developer Daily Commitment: 2-3 hours recommended

🗺️ Learning Path Structure

Phase 1: Foundations (2-3 months)
    └─> Python Basics & Core Concepts
    
Phase 2: Intermediate (3-4 months)
    └─> Data Structures, OOP, Functional Programming
    
Phase 3: Advanced (4-5 months)
    └─> Metaprogramming, Concurrency, Performance
    
Phase 4: Expert (3-4 months)
    └─> Advanced Patterns, System Design, Best Practices
    
Phase 5: Specialization (Ongoing)
    └─> Choose your domain (Web, Data Science, DevOps, etc.)

📚 Learning Modules Breakdown

Phase 1: Python Foundations (Beginner to Intermediate)

Duration: 2-3 months | Difficulty: ☆☆☆

  1. Module 1.1: Python Basics (2 weeks)

    • Installation & Environment Setup
    • Variables, Data Types, Operators
    • Input/Output, String Operations
    • Control Flow (if/elif/else)
    • Loops (for, while, break, continue)
    • Basic Error Handling
  2. Module 1.2: Data Structures (2 weeks)

    • Lists, Tuples, Sets
    • Dictionaries
    • List Comprehensions
    • Dictionary & Set Comprehensions
    • Collections Module (namedtuple, defaultdict, Counter, deque)
  3. Module 1.3: Functions & Modules (2 weeks)

    • Function Definition & Arguments
    • *args and **kwargs
    • Lambda Functions
    • Map, Filter, Reduce
    • Modules & Packages
    • Import System
  4. Module 1.4: File Handling & Exception Handling (1 week)

    • Reading & Writing Files
    • Context Managers (with statement)
    • Exception Types
    • Try/Except/Finally
    • Custom Exceptions
    • Raising Exceptions
  5. Module 1.5: Object-Oriented Programming Basics (3 weeks)

    • Classes & Objects
    • Attributes & Methods
    • init and str
    • Inheritance (Single & Multiple)
    • Encapsulation
    • Polymorphism
    • Method Overriding

Phase 2: Intermediate Python (Intermediate)

Duration: 3-4 months | Difficulty: ☆☆

  1. Module 2.1: Advanced OOP (2 weeks)

    • Property Decorators (@property)
    • Class Methods & Static Methods
    • Abstract Base Classes (ABC)
    • Method Resolution Order (MRO)
    • Multiple Inheritance & Mixins
    • Composition vs Inheritance
  2. Module 2.2: Iterators & Generators (2 weeks)

    • Iterator Protocol (iter, next)
    • Generator Functions (yield)
    • Generator Expressions
    • itertools Module
    • Memory Efficiency with Generators
    • Coroutines Basics
  3. Module 2.3: Decorators (2 weeks)

    • Function Decorators
    • Class Decorators
    • Decorator Patterns
    • Functools Module (wraps, lru_cache, partial)
    • Chaining Decorators
    • Decorators with Arguments
  4. Module 2.4: Context Managers (1 week)

    • enter and exit
    • contextlib Module
    • Custom Context Managers
    • contextmanager Decorator
    • Resource Management Patterns
  5. Module 2.5: Regular Expressions (1 week)

    • Regex Syntax & Patterns
    • re Module Functions
    • Match Objects
    • Groups & Capturing
    • Lookahead & Lookbehind
    • Regex Performance
  6. Module 2.6: Functional Programming (2 weeks)

    • First-Class Functions
    • Higher-Order Functions
    • Closures
    • Partial Application
    • Immutability Concepts
    • Functional Tools (map, filter, reduce)
    • operator Module
  7. Module 2.7: Type Hints & Static Typing (2 weeks)

    • Type Annotations
    • typing Module (List, Dict, Optional, Union)
    • Generic Types
    • Protocol & TypedDict
    • mypy Static Type Checker
    • Type Checking Best Practices

Phase 3: Advanced Python

Duration: 4-5 months | Difficulty:

  1. Module 3.1: Metaclasses (2 weeks)

    • What are Metaclasses?
    • type() Function
    • new vs init
    • Creating Custom Metaclasses
    • Metaclass Use Cases
    • Class Creation Process
  2. Module 3.2: Descriptors (2 weeks)

    • Descriptor Protocol
    • get, set, delete
    • Data vs Non-Data Descriptors
    • Property Implementation
    • Descriptor Use Cases
    • Managed Attributes
  3. Module 3.3: Magic Methods (Dunder Methods) (2 weeks)

    • Operator Overloading
    • repr vs str
    • call, getitem, setitem
    • len, contains
    • Comparison Methods (eq, lt, etc.)
    • Arithmetic Methods
    • Context Manager Methods
  4. Module 3.4: Memory Management (2 weeks)

    • Python Memory Model
    • Reference Counting
    • Garbage Collection
    • gc Module
    • Memory Profiling
    • slots for Memory Optimization
    • Weak References
  5. Module 3.5: Concurrency - Threading (2 weeks)

    • threading Module
    • Thread Objects
    • Locks & RLocks
    • Semaphores & Events
    • Thread-Safe Queues
    • GIL (Global Interpreter Lock)
    • Thread Pool Executor
  6. Module 3.6: Concurrency - Multiprocessing (2 weeks)

    • multiprocessing Module
    • Process Objects
    • Inter-Process Communication (Pipes, Queues)
    • Shared Memory (Value, Array, Manager)
    • Process Pool Executor
    • When to Use vs Threading
  7. Module 3.7: Asynchronous Programming (3 weeks)

    • asyncio Fundamentals
    • async/await Syntax
    • Event Loop
    • Coroutines & Tasks
    • Futures
    • asyncio Streams
    • aiohttp for Async HTTP
    • Async Context Managers & Iterators
  8. Module 3.8: Performance Optimization (2 weeks)

    • Profiling (cProfile, line_profiler)
    • Benchmarking (timeit)
    • Performance Best Practices
    • Algorithm Optimization
    • Data Structure Selection
    • Caching Strategies
    • JIT Compilation (Numba, PyPy)

Phase 4: Expert Python

Duration: 3-4 months | Difficulty:

  1. Module 4.1: Advanced Design Patterns (3 weeks)

    • Creational Patterns (Singleton, Factory, Builder)
    • Structural Patterns (Adapter, Decorator, Facade)
    • Behavioral Patterns (Observer, Strategy, Command)
    • Python-Specific Patterns
    • Anti-Patterns to Avoid
  2. Module 4.2: Testing & Quality Assurance (3 weeks)

    • unittest Framework
    • pytest Framework
    • Test Fixtures & Parametrization
    • Mocking & Patching
    • Coverage Analysis
    • Test-Driven Development (TDD)
    • Property-Based Testing (Hypothesis)
  3. Module 4.3: Debugging & Profiling (2 weeks)

    • pdb Debugger
    • Remote Debugging
    • Memory Leak Detection
    • Performance Profiling
    • Logging Best Practices
    • Error Tracking
  4. Module 4.4: Package Development (2 weeks)

    • Project Structure
    • setup.py & pyproject.toml
    • setuptools & pip
    • Virtual Environments (venv, virtualenv)
    • Dependency Management (pip, Poetry, pipenv)
    • Publishing to PyPI
  5. Module 4.5: C Extensions & Cython (2 weeks)

    • Python C API
    • ctypes & cffi
    • Cython Basics
    • Performance with Cython
    • Interfacing with C Libraries
    • When to Use C Extensions
  6. Module 4.6: Advanced Data Manipulation (2 weeks)

    • NumPy Fundamentals
    • Pandas Basics
    • Data Processing Patterns
    • Memory-Efficient Data Processing
    • Working with Large Datasets
  7. Module 4.7: Network Programming (2 weeks)

    • socket Module
    • TCP/IP Programming
    • UDP Programming
    • HTTP Clients & Servers
    • WebSocket Programming
    • Network Security Basics
  8. Module 4.8: Database Programming (2 weeks)

    • DB-API 2.0 Standard
    • SQLite, PostgreSQL, MySQL
    • Connection Pools
    • ORM Concepts (SQLAlchemy basics)
    • NoSQL with Python (MongoDB, Redis)
    • Database Best Practices

Phase 5: Python Specializations (Choose Your Path)

Duration: Ongoing | Difficulty:

  1. Specialization A: Web Development

    • Django Framework (Advanced)
    • Flask/FastAPI
    • REST API Design
    • GraphQL
    • WebSockets
    • Authentication & Authorization
    • Web Security
    • Deployment & Scaling
  2. Specialization B: Data Science & ML

    • Advanced NumPy & Pandas
    • Data Visualization (Matplotlib, Seaborn)
    • Scikit-learn
    • TensorFlow/PyTorch Basics
    • Data Pipelines
    • Feature Engineering
    • Model Deployment
  3. Specialization C: DevOps & Automation

    • System Administration with Python
    • Automation Scripts
    • CI/CD Pipelines
    • Docker & Kubernetes
    • Infrastructure as Code
    • Monitoring & Logging
    • Cloud Services (AWS, GCP, Azure)
  4. Specialization D: Security & Cryptography

    • cryptography Module
    • Secure Coding Practices
    • Penetration Testing
    • Web Security
    • Authentication Systems
    • Encryption & Hashing

📈 Progress Tracking

Mastery Levels

  • Level 0: Unfamiliar - Never encountered
  • Level 1: Aware - Know it exists, basic understanding
  • Level 2: Competent - Can use with documentation
  • Level 3: Proficient - Can use without documentation
  • Level 4: Expert - Can teach others, optimize, debug complex issues

Weekly Goals

  • Complete 1-2 modules per month
  • Practice coding daily (30-60 minutes minimum)
  • Build 1 small project per week
  • Read Python source code weekly
  • Contribute to open source monthly

Monthly Assessments

  • Take comprehensive exam covering month's topics
  • Build one medium-sized project
  • Write blog post explaining learned concepts
  • Review and refactor old code

🎓 Learning Resources

  1. "Python Crash Course" by Eric Matthes (Foundations)
  2. "Fluent Python" by Luciano Ramalho (Intermediate-Advanced)
  3. "Effective Python" by Brett Slatkin (Best Practices)
  4. "Python Cookbook" by David Beazley (Advanced Techniques)
  5. "High Performance Python" by Micha Gorelick (Optimization)

Online Resources

  • Official Python Documentation (python.org)
  • Real Python (realpython.com)
  • Python Enhancement Proposals (PEPs)
  • Python Package Index (PyPI)
  • Stack Overflow Python Tag

Practice Platforms

  • LeetCode (Algorithm practice)
  • HackerRank (Python challenges)
  • Codewars (Python kata)
  • Project Euler (Math/Programming problems)
  • Real-world projects on GitHub

🏆 Milestones & Achievements

Milestone 1: Python Basics Complete (Month 2-3)

  • Can write basic scripts
  • Understand all basic data structures
  • Can use functions and modules
  • Handle files and exceptions
  • 🎯 Project: Build a CLI todo app

Milestone 2: Intermediate Python (Month 5-7)

  • Master OOP concepts
  • Write decorators and generators
  • Use type hints effectively
  • Understand functional programming
  • 🎯 Project: Build a web scraper with data storage

Milestone 3: Advanced Python (Month 9-12)

  • Understand metaclasses and descriptors
  • Master async programming
  • Optimize code performance
  • Write concurrent programs
  • 🎯 Project: Build an async web server

Milestone 4: Expert Python (Month 13-16)

  • Master design patterns
  • Write comprehensive tests
  • Create distributable packages
  • Understand Python internals
  • 🎯 Project: Publish an open-source package

Milestone 5: Specialization (Month 17-18+)

  • Master chosen specialization
  • Contribute to major projects
  • Build production-ready applications
  • 🎯 Project: Major portfolio project

📝 Assessment Strategy

Weekly Quizzes

  • 10-15 questions on week's topics
  • Mix of single choice, multiple choice, true/false
  • "I don't know" option available for honest assessment

Monthly Comprehensive Exams

  • 30-50 questions covering all monthly topics
  • Includes coding exercises
  • Auto-graded with detailed feedback

Quarterly Projects

  • Build substantial projects
  • Code review and feedback
  • Real-world application focus

Continuous Assessment

  • Track time spent on each topic
  • Monitor quiz/exam scores
  • Identify weak areas for review
  • Adjust learning pace as needed

🚀 Getting Started

Week 1 Action Plan

  1. Set up Python development environment
  2. Install essential tools (IDE, Git)
  3. Read "Python Basics" module
  4. Complete 5 beginner exercises
  5. Take first quiz on basics

Daily Study Routine

  • Morning (30 min): Read theory/documentation
  • Afternoon (60 min): Hands-on coding practice
  • Evening (30 min): Review, quiz, or project work

Weekend Activities

  • Build small projects
  • Read Python source code
  • Watch Python conference talks
  • Contribute to open source

💡 Learning Tips

  1. Code Every Day: Even 30 minutes makes a difference
  2. Read Others' Code: Learn from experienced developers
  3. Build Projects: Apply what you learn immediately
  4. Teach Others: Best way to solidify understanding
  5. Review Regularly: Spaced repetition is key
  6. Don't Rush: Deep understanding > speed
  7. Ask Questions: Engage with Python community
  8. Stay Updated: Follow Python news and PEPs

🔗 Next Steps

  1. Review the detailed modules in 01_KNOWLEDGE_GRAPH.md
  2. Check your current level in 02_ASSESSMENT.md
  3. Follow the weekly schedule in 03_WEEKLY_SCHEDULE.md
  4. Track progress in 04_PROGRESS_TRACKER.md
  5. Start with Module 1.1 in modules/ folder

Remember: This is a marathon, not a sprint. Focus on deep understanding rather than rushing through topics. Happy learning! 🐍